Search results

Search for "biomedical imaging" in Full Text gives 15 result(s) in Beilstein Journal of Nanotechnology.

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • photodetectors (PDs) to “Industry 4.0”, which may include image sensors, biomedical imaging, manufacturing process control, environmental sensing, and optical sensors [8]. Various materials for photodetectors have been developed. Photodetectors can be classified into two main categories, namely PDs that work at
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • . Biomedical applications apply an additional constraint on the diameter of nanotubes. Small-diameter SWCNTs display intrinsic photoluminescence in the spectral range of 900–1100 nm within the biological transparency window, making them ideal candidates for single-molecule biosensors or biomedical imaging
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • Santiago D. Solares Alexander X. Cartagena-Rivera Department of Mechanical and Aerospace Engineering, The George Washington University, School of Engineering and Applied Science, Washington, District of Columbia, USA Section on Mechanobiology, National Institute of Biomedical Imaging and
PDF
Album
Perspective
Published 09 Dec 2022

A super-oscillatory step-zoom metalens for visible light

  • Yi Zhou,
  • Chao Yan,
  • Peng Tian,
  • Zhu Li,
  • Yu He,
  • Bin Fan,
  • Zhiyong Wang,
  • Yao Deng and
  • Dongliang Tang

Beilstein J. Nanotechnol. 2022, 13, 1220–1227, doi:10.3762/bjnano.13.101

Graphical Abstract
  • plasmons can reach a spatial resolution of 22 nm, but the imaging range is limited to the sample surface, causing difficulties in biomedical imaging. Although negative refractive superlenses and hyperbolic metamaterials [6][7] have been experimentally verified for super-resolution imaging, they exhibit
PDF
Album
Full Research Paper
Published 28 Oct 2022

Nanoarchitectonics: bottom-up creation of functional materials and systems

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2020, 11, 450–452, doi:10.3762/bjnano.11.36

Graphical Abstract
  • hydroxide/sepiolite hybrids [31], and cell surface engineering with halloysite-doped silica cell imprints for shape recognition of human cells [32]. In another example, magnetic nanoparticles were attached to microbubble shells for enhanced biomedical imaging [33]. In a final example, the detection of the
PDF
Album
Editorial
Published 12 Mar 2020

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • ) [53]. Here, we focus on the enhancement of the emission of the VSi, VSiVC and NCVSi/4H-SiC platforms aiming at increasing the photon collection efficiency of many emitters to improve the resolution of quantum sensing in biomedical imaging applications due to the favorable emission in the near-infrared
PDF
Album
Full Research Paper
Published 05 Dec 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
PDF
Album
Review
Published 04 Nov 2019

Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions

  • Da Shi,
  • Justine Wallyn,
  • Dinh-Vu Nguyen,
  • Francis Perton,
  • Delphine Felder-Flesch,
  • Sylvie Bégin-Colin,
  • Mounir Maaloum and
  • Marie Pierre Krafft

Beilstein J. Nanotechnol. 2019, 10, 2103–2115, doi:10.3762/bjnano.10.205

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • agent offer a fast scan time (less than 2 min), low cost, and biocompatibility and allow for high-resolution imaging with ca. 150 Hounsfield units (HU). The Au-CPMV surface was further modified allowing for the incorporation of targeting molecules of specific cell types. Keywords: biomedical imaging
PDF
Album
Full Research Paper
Published 07 Oct 2019

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • various applications, such as energy conversion in solar cells [10][11], biosensing [12], photothermal therapy [13], and biomedical imaging [14]. Surface modification with an inorganic coating, such as silica, can lend biocompatibility to the nanoparticles [15][16][17][18]. A gold shell on magnetic
PDF
Album
Full Research Paper
Published 14 Aug 2017

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks
PDF
Album
Review
Published 25 Apr 2016

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • encapsulated with silica micro/nanospheres. Emphasis is put on synthesis, characterization and their simultaneous application in biomedical imaging and the diagnosis and therapy of cancer. 2 Different combinations of materials used for bimodal imaging In order to optimize the use of silica micro/nanospheres as
  • of dopant ions in a nanoparticle environment. Thus these new classes of materials can be used as potential fluorescent probes for biomedical imaging. Singh et al. [16] reported the synthesis of luminescent YVO4:Eu3+ NPs incorporated inside mesoporous silica NPs through a sol–gel process. The
PDF
Album
Review
Published 24 Feb 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • size-dependent optical properties possess great potential as probe for biomedical imaging applications, as previously shown for the mapping of lymph node structures [87]. Their superior photostability, their broad excitation and narrow emission spectra offer additional advantages [85] that even allow
PDF
Album
Review
Published 23 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • fluorescent FMN–BNNT complex under daylight and UV light irridation [19]. Furthermore, the fluorescence from this complex was thermally stable and pH-dependent. It was suggested that FMN–BNNT nanohybrids could be used for biomedical imaging. The adsorption of ferritin onto BNNTs was also reported. It was
PDF
Album
Review
Published 08 Jan 2015

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • potential applications as catalysts, in drug delivery, biomedical imaging, high-throughput immunoassays, for biological probing, and remote manipulation of devices. In addition, Janus particles may find use as surfactants, water-repellent coatings, or building blocks for supramolecular structures. We put
PDF
Album
Review
Published 05 Dec 2014
Other Beilstein-Institut Open Science Activities